%0 Journal Article %T Unraveling the Mechanism of Curculiginis Rhizoma in Suppressing Cisplatin Resistance in Non-Small Cell Lung Cancer: An Experimental Study. %A Huang X %A Wang M %A Zhu B %A Hao Y %A Gao R %A Liu W %A Cheng J %A Hua G %A Xue C %J Onco Targets Ther %V 17 %N 0 %D 2024 %M 38895133 %F 4.345 %R 10.2147/OTT.S448636 %X UNASSIGNED: Non-small cell lung cancer (NSCLC) stands as one of the most prevalent malignancies, and chemotherapy remains the primary treatment for advanced stages. However, the high expression of ABC binding cassette transporters, including MRP, P-gp, and LRP, along with multidrug resistance proteins, has been identified as a significant factor contributing to decreased chemotherapy drug sensitivity. This study aims to explore the impact and underlying mechanisms of Curculiginis Rhizoma [Hypoxidaceae; Curculigo orchioides Gaertn.] (CR) in combination with cisplatin on improving chemoresistance mediated by ABC binding cassette transporters and multidrug resistance proteins in NSCLC.
UNASSIGNED: To unravel the relationship between JNK, MRP, P-gp, and LRP in NSCLC and gain insights into the regulatory mechanism of CR, this study employs an integrated approach encompassing bioinformatics, molecular docking, molecular dynamics, animal and cellular experiments. Bioinformatics analysis revealed a significant increase in the expression levels of JNK, MRP, P-gp, and LRP subtypes in multidrug-resistant non-small cell lung cancer. Subsequent animal experiments have shown that the combination of CR with cisplatin can improve the survival rate of lung cancer mice. Molecular docking and molecular dynamics analyses demonstrated favorable binding interactions between curculigoside and the aforementioned subtypes of JNK, MRP, P-gp, and LRP. In cellular experiments, the combination of cisplatin with both curculigoside and CR extract resulted in a notable decrease in cell viability and downregulation of the expression of JNK1, JNK2, MRP1, MRP2, MRP4, P-gp, and LRP1 in A549/cis cells.
UNASSIGNED: Remarkably, curculigoside exerted a significant downregulation effect on the expression levels of JNK1, MRP1, MRP2, MRP4, and LRP1. CR, particularly its main effective metabolite, curculigoside, has the potential to enhance the sensitivity of non-small cell lung cancer to cisplatin by regulating levels of JNK/MRP/LRP/P-gp and mitigating multidrug resistance.