%0 Journal Article %T The Lreu_1276 protein from Limosilactobacillus reuteri represents a third family of dihydroneopterin triphosphate pyrophosphohydrolases in bacteria. %A Kachi K %A Sato T %A Nagasawa M %A Cann I %A Atomi H %J Appl Environ Microbiol %V 0 %N 0 %D 2024 Jun 18 %M 38888337 %F 5.005 %R 10.1128/aem.00814-24 %X Tetrahydrofolate is a cofactor involved in C1 metabolism including biosynthesis pathways for adenine and serine. In the classical tetrahydrofolate biosynthesis pathway, the steps removing three phosphate groups from the precursor 7,8-dihydroneopterin triphosphate (DHNTP) remain unclear in many bacteria. DHNTP pyrophosphohydrolase hydrolyzes pyrophosphate from DHNTP and produces 7,8-dihydroneopterin monophosphate. Although two structurally distinct DHNTP pyrophosphohydrolases have been identified in the intestinal bacteria Lactococcus lactis and Escherichia coli, the distribution of their homologs is limited. Here, we aimed to identify a third DHNTP pyrophosphohydrolase gene in the intestinal lactic acid bacterium Limosilactobacillus reuteri. In a gene operon including genes involved in dihydrofolate biosynthesis, we focused on the lreu_1276 gene, annotated as Ham1 family protein or XTP/dITP diphosphohydrolase, as a candidate encoding DHNTP pyrophosphohydrolase. The Lreu_1276 recombinant protein was prepared using E. coli and purified. Biochemical analyses of the reaction product revealed that the Lreu_1276 protein displays significant pyrophosphohydrolase activity toward DHNTP. The optimal reaction temperature and pH were 35°C and around 7, respectively. Substrate specificity was relatively strict among 17 tested compounds. Although previously characterized DHNTP pyrophosphohydrolases prefer Mg2+, the Lreu_1276 protein exhibited maximum activity in the presence of Mn2+, with a specific activity of 28.2 ± 2.0 µmol min-1 mg-1 in the presence of 1 mM Mn2+. The three DHNTP pyrophosphohydrolases do not share structural similarity to one another, and the distribution of their homologs does not overlap, implying that the Lreu_1276 protein represents a third structurally novel DHNTP pyrophosphohydrolase in bacteria.
OBJECTIVE: The identification of a structurally novel DHNTP pyrophosphohydrolase in L. reuteri provides valuable information in understanding tetrahydrofolate biosynthesis in bacteria that possess lreu_1276 homologs. Interestingly, however, even with the identification of a third family of DHNTP pyrophosphohydrolases, there are still a number of bacteria that do not harbor homologs for any of the three genes while possessing other genes involved in the biosynthesis of the pterin ring structure. This suggests the presence of an unrecognized DHNTP pyrophosphohydrolase gene in bacteria. As humans do not harbor DHNTP pyrophosphohydrolase, the high structural diversity of enzymes responsible for a reaction in tetrahydrofolate biosynthesis may provide an advantage in designing inhibitors targeting a specific group of bacteria in the intestinal microbiota.