%0 Journal Article %T Synergistic energy-efficient capture of VOCs and metal-free catalytic conversion using magneto-inductive Guefoams: Proof-of-concept in n-hexane-enriched nitrogen streams. %A Verdú N %A Molina JM %J J Hazard Mater %V 475 %N 0 %D 2024 Aug 15 %M 38878432 %F 14.224 %R 10.1016/j.jhazmat.2024.134872 %X Addressing contemporary environmental and health concerns requires reducing pollutant emissions and converting them into less harmful or valuable compounds within the framework of the circular economy. Guefoam materials offer a promising solution by enabling the capture and pre-concentration of volatile organic compounds (VOCs), while facilitating the structuring of active phases for heterogeneous catalytic conversions. This study demonstrates the benefits of merging two newly designed electromagnetic induction-assisted ceramic matrix Guefoams into a portable integrated unit, synergizing the pre-concentration and chemical transformation of n-hexane, a VOC with special challenges. One Guefoam serves as an adsorbent, whereas the other plays a catalytic role. These Guefoams host guest phases, which consist of composite materials combining a steel core with magneto-inductive properties encased in a highly porous carbonaceous layer. This carbonaceous material undertakes a dual mission: adsorbing n-hexane from a nitrogen stream within the adsorptive Guefoam and, upon phosphorus doping in the catalytic Guefoam, orchestrating the metal-free selective dehydroaromatization of n-hexane into benzene. The design and integration of these novel Guefoam materials into a unified functional entity prove highly effective in pre-concentrating (enrichment factors up to 275) and catalyzing n-hexane with up to 84 % conversion and 94 % benzene selectivity while remaining energy-efficient and environmentally sustainable.