%0 Journal Article %T Effects of MAL gene knockout on lung tissue morphology and on E-cad and α-SMA expression in asthma mouse models. %A Qu G %A Liu Y %A Ouyang J %A Xiao L %A Liu X %J J Asthma %V 0 %N 0 %D 2024 Jun 14 %M 38875021 暂无%R 10.1080/02770903.2024.2355982 %X UNASSIGNED: To investigate the effects of myelin- and lymphocyte-associated protein (MAL) gene knockout on the morphological structure of lung tissue and the expression of E-cadherin (E-cad) and alpha-smooth muscle actin (α-SMA) in an asthmatic mouse model.
UNASSIGNED: Twenty-four specific pathogen-free (SPF) C57BL/6J mice were divided into four groups: the wild-type normal (WT/SAL), wild-type asthmatic (WT/OVA), gene knockout normal (MAL-/-/SAL), and gene knockout asthmatic (MAL-/-/OVA) groups. The establishment of the asthma mouse models was confirmed by evaluating behavioral symptoms and histopathological H&E and Masson staining. Western blotting and RT-qPCR were used to measure E-cad and α-SMA expression levels in lung tissues.
UNASSIGNED: H&E staining of mouse lung tissues from WT/OVA, MAL-/-/SAL, and MAL-/-/OVA groups revealed a thickened bronchial wall, irregular lumen edge, locally fallen mucosal epithelium, and inflammatory cell infiltration compared with those of the WT/SAL group. In the WT and MAL-/- groups, the proportion of Masson-stained tissues in the OVA group was greater than that in the SAL group (p < 0.05). Compared with those in the WT/SAL group, the expression levels of α-SMA mRNA and protein were increased, while those of E-cad were decreased in the WT/OVA group (p < 0.01). Similarly, compared with those in the MAL-/-/SAL group, the expression levels of E-cad mRNA and protein were increased, while those of α-SMA were decreased in the MAL-/-/OVA group (p < 0.01). All these differences were statistically significant (p < 0.01).
UNASSIGNED: The MAL gene contributes to EMT inhibition and the stability of the airway barrier under normal physiological conditions by regulating E-cad and α-SMA expression.