%0 Journal Article %T MeRIP-Seq for Identifying Stress-Responsive Transcriptome-Wide m6A Profiles in Plants. %A Govindan G %A Sunkar R %J Methods Mol Biol %V 2832 %N 0 %D 2024 %M 38869786 暂无%R 10.1007/978-1-0716-3973-3_3 %X Recent advancements in detection and mapping methods have enabled researchers to uncover the biological importance of RNA chemical modifications, which play a vital role in post-transcriptional gene regulation. Although numerous types of RNA modifications have been identified in higher eukaryotes, only a few have been extensively studied for their biological functions. Of these, N6-methyladenosine (m6A) is the most prevalent and important mRNA modification that influences various aspects of RNA metabolism, including mRNA stability, degradation, splicing, alternative polyadenylation, export, and localization, as well as translation. Thus, they have implications for a variety of biological processes, including growth, development, and stress responses. The m6A deposition or removal on transcripts is dynamic and is altered in response to internal and external cues. Because this mark can alter gene expression under stress conditions, it is essential to identify the transcripts that can acquire or lose this epitranscriptomic mark upon exposure to stress conditions. Here we describe a step-by-step protocol for identifying stress-responsive transcriptome-wide m6A changes using RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq).