%0 Journal Article %T Ce-Doped SnO2 Electron Transport Layer for Minimizing Open Circuit Voltage Loss in Lead Perovskite Solar Cells. %A Ahmmed S %A He Y %A Kayesh ME %A Karim MA %A Matsuishi K %A Islam A %J ACS Appl Mater Interfaces %V 16 %N 25 %D 2024 Jun 26 %M 38865690 %F 10.383 %R 10.1021/acsami.4c05180 %X In the planar heterostructure of perovskite-based solar cells (PSCs), tin oxide (SnO2) is a material that is often used as the electron transport layer (ETL). SnO2 ETL exhibits favorable optical and electrical properties in the PSC structures. Nevertheless, the open circuit voltage (VOC) depletion occurs in PSCs due to the defects arising from the high oxygen vacancy on the SnO2 surface and the deeper conduction band (CB) energy level of SnO2. In this research, a cerium (Ce) dopant was introduced in SnO2 (Ce-SnO2) to suppress the VOC loss of the PSCs. The CB minimum of SnO2 was shifted closer to that of the perovskite after the Ce doping. Besides, the Ce doping effectively passivated the surface defects on SnO2 as well as improved the electron transport velocity by the Ce-SnO2. These results enabled the power conversion efficiency (PCE) to increase from 21.1% (SnO2) to 23.0% (Ce-SnO2) of the PSCs (0.09 cm2 active area) with around 100 mV of improved VOC and reduced hysteresis. Also, the Ce-SnO2 ETL-based large area (1.0 cm2) PSCs delivered the highest PCE of 22.9%. Furthermore, a VOC of 1.19 V with a PCE of 23.3% was demonstrated by Ce-SnO2 ETL-based PSCs (0.09 cm2 active area) that were treated with 2-phenethylamine hydroiodide on the perovskite top surface. Notably, the unencapsulated Ce-SnO2 ETL-based PSC was able to maintain above 90% of its initial PCE for around 2000 h which was stored under room temperature condition (23-25 °C) with a relative humidity of 40-50%.