%0 Journal Article %T Crosstalk between circBMI1 and miR-338-5p/ID4 inhibits AML progression. %A Su X %A Hu B %A Yi J %A Zhao Q %A Zhou Y %A Zhu X %A Wu D %A Fan Y %A Lin J %A Cao C %A Deng Z %J J Leukoc Biol %V 0 %N 0 %D 2024 Jun 12 %M 38864460 %F 6.011 %R 10.1093/jleuko/qiae136 %X BMI1 Polycomb Ring Finger Proto-Oncogene (BMI1) is involved in the pathogenesis of different cancers, including acute myeloid leukemia (AML). However, the role of the circular RNA of BMI1 (circBMI1) has not been studied. Our study aimed to investigate the role and mechanism of circBMI1 in AML. circBMI1 was significantly decreased in bone marrow mononuclear cells aspirated from patients with AML. Receiver operating characteristic curve analysis showed that circBMI1 could distinguish patients with AML from controls. By overexpressing and knocking down circBMI1 in HL-60 cells, we found that circBMI1 inhibited cell proliferation, promoted apoptosis, and increased chemotherapeutic drug sensitivity in AML. Experiments using severe combined immune-deficient mice and circBMI1 transgenic mice showed that mice with circBMI1 overexpression had lower white blood cell counts, which suggested less severe AML invasion. RNA immunoprecipitation and dual-luciferase reporter assay revealed binding sites among circBMI1, miR-338-5p, and inhibitor of DNA binding 4 (ID4). Rescue experiments proved that circBMI1 inhibited AML progression by binding to miR-338-5p, which affected the expression of ID4. By coculturing exosomes extracted from circBMI1-HL-60 and small interfering circBMI1-HL-60 cells with HL-60 cells, we found that exosomes from circBMI1-HL-60 cells showed tumor suppressive effects, namely inhibiting HL-60 proliferation, promoting apoptosis, and increasing chemotherapeutic drug sensitivity. Exosomes from small interfering circBMI1-HL-60 cells showed the opposite effects. circBMI1 may act as an exosome-dependent tumor inhibitor. circBMI1, a potential biomarker for clinical diagnosis, acts as a tumor suppressor in AML by regulating miR-338-5p/ID4 and might affect the pathogenesis of AML by exosome secretion.