%0 Journal Article %T Quantifying the Level of 8-oxo-dG Using ELISA Assay to Evaluate Oxidative DNA Damage in MCF-7 Cells. %A Nian L %A Li X %A Du J %A Liu SB %J J Vis Exp %V 0 %N 207 %D 2024 May 24 %M 38856223 %F 1.424 %R 10.3791/66888 %X 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) base is the predominant form of commonly observed DNA oxidative damage. DNA impairment profoundly impacts gene expression and serves as a pivotal factor in stimulating neurodegenerative disorders, cancer, and aging. Therefore, precise quantification of 8-oxoG has clinical significance in the investigation of DNA damage detection methodologies. However, at present, the existing approaches for 8-oxoG detection pose challenges in terms of convenience, expediency, affordability, and heightened sensitivity. We employed the sandwich enzyme-linked immunosorbent assay (ELISA) technique, a highly efficient and swift colorimetric method, to detect variations in 8-oxo-dG content in MCF-7 cell samples stimulated with different concentrations of hydrogen peroxide (H2O2). We determined the concentration of H2O2 that induced oxidative damage in MCF-7 cells by detecting its IC50 value in MCF-7 cells. Subsequently, we treated MCF-7 cells with 0, 0.25, and 0.75 mM H2O2 for 12 h and extracted 8-oxo-dG from the cells. Finally, the samples were subjected to ELISA. Following a series of steps, including plate spreading, washing, incubation, color development, termination of the reaction, and data collection, we successfully detected changes in the 8-oxo-dG content in MCF-7 cells induced by H2O2. Through such endeavors, we aim to establish a method to evaluate the degree of DNA oxidative damage within cell samples and, in doing so, advance the development of more expedient and convenient approaches for DNA damage detection. This endeavor is poised to make a meaningful contribution to the exploration of associative analyses between DNA oxidative damage and various domains, including clinical research on diseases and the detection of toxic substances.