%0 Journal Article %T Inhibition of Cholesteryl Ester Transfer Protein Contributes to the Protection of Ginsenoside Re Against Isoproterenol-Induced Cardiac Hypertrophy. %A Qiu Y %A Xie M %A Ding X %A Zhang H %A Li H %A Wang H %A Li T %A Dong W %A Jiang F %A Tang X %J Cureus %V 16 %N 5 %D 2024 May %M 38854305 暂无%R 10.7759/cureus.59942 %X Background and objectives Ginsenoside Re (Re), a protopanaxatriol-type saponin extracted from ginseng, is known to have potential cardioprotective effects; however, the mechanisms of Re in improving cardiac hypertrophy have not been fully elucidated. This study aimed to investigate the therapeutic effects and underlying mechanism of Re on isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro. Methods Rats were intraperitoneally injected with ISO 30 mg/kg thrice daily for 14 consecutive days to induce cardiac hypertrophy, and these rats were treated with atorvastatin (ATC, 20 mg/kg) or Re (20 mg/kg or 40 mg/kg) once daily for three days in advance until the end of the experiment. Heart weight index, hematoxylin and eosin staining, and hypertrophy-related fetal gene expression were measured to evaluate the effect of Re on cardiac hypertrophy in vivo. Meanwhile, the rat H9c2 cardiomyocyte hypertrophy model was induced by ISO 10 μM for 24 hours. Cell surface area and hypertrophy-related fetal gene expression were determined to assess the effect of Re on ISO-induced cardiomyocyte hypertrophy in vitro. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in both serum and cardiomyocytes were detected by enzymatic colorimetric assays. Furthermore, we chose cholesteryl ester transfer protein (CETP) as a target to explore the influence of Re on CETP expression in vivo and in vitro through real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Results Intraperitoneal administration of ISO into rats resulted in increases in cross-sectional cardiomyocyte area, the ratio of heart weight to body weight, the ratio of left ventricular weight to body weight, and the ratio of right ventricular weight to body weight, as well as reactivation of fetal genes; however, treatment with Re or ATC ameliorated most of these hypertrophic responses. Similarly, Re pronouncedly alleviated ISO-induced cardiomyocyte hypertrophy, as evidenced by a decreased cell surface area and downregulation of fetal genes. Moreover, our in vivo and in vitro data revealed that Re reduced TC, TG, and LDL-C levels, and enhanced HDL-C levels. Re improved cardiac hypertrophy mainly associated with the inhibition of mRNA level and protein expression of CETP, to an extent comparable to that of the classical CETP inhibitor, anacetrapib. Conclusions Our research found that CETP inhibition contributes to the protection of Re against ISO-induced cardiac hypertrophy, which provides evidence for the application of Re for cardiovascular disease treatments.