%0 Journal Article %T Monofluorophore-based Two-Photon Ratiometric Fluorescent Probe for the Quantitative Imaging of Fatty Acid Amide Hydrolase in Live Neurons and Mouse Brain Tissues. %A Gu X %A Wang X %A Cai W %A Han Y %A Zhang QW %J ACS Sens %V 9 %N 6 %D 2024 Jun 28 %M 38850514 %F 9.618 %R 10.1021/acssensors.4c00721 %X Fatty acid amide hydrolase (FAAH) plays a crucial role in the metabolism of the endocannabinoid system by hydrolyzing a series of bioactive amides, whose abnormal levels are associated with neuronal disorders including Alzheimer's disease (AD). However, due to the lack of suitable quantitative sensing tools, real-time and accurate monitoring of the activity of FAAH in living systems remains unresolved. Herein, a novel enzyme-activated near-infrared two-photon ratiometric fluorescent probe (CANP) based on a naphthylvinylpyridine monofluorophore is successfully developed, in which the electron-withdrawing amide moiety is prone to be hydrolyzed to an electron-donating amine group under the catalysis of FAAH, leading to the activation of the intramolecular charge transfer process and the emergence of a new 80 nm red-shifted emission, thereby achieving a ratiometric luminescence response. Benefiting from the high selectivity, high sensitivity, and ratiometric response to FAAH, the probe CANP is successfully used to quantitatively monitor and image the FAAH levels in living neurons, by which an amyloid β (Aβ)-induced upregulation of endogenous FAAH activity is observed. Similar increases in FAAH activity are found in various brain regions of AD model mice, indicating a potential fatty acid amide metabolite-involved pathway for the pathological deterioration of AD. Moreover, our quantitative FAAH inhibition experiments further demonstrate the great value of CANP as an efficient visual probe for in situ and precise assessment of FAAH inhibitors in complex living systems, assisting the discovery of FAAH-related therapeutic agents.