%0 Journal Article %T Comparative study of atmospheric brown carbon at Shanghai and the East China Sea: Molecular characterization and optical properties. %A Cai D %A Li C %A Lin J %A Sun W %A Zhang M %A Wang T %A Abudumutailifu M %A Lyu Y %A Huang X %A Li X %A Chen J %J Sci Total Environ %V 941 %N 0 %D 2024 Sep 1 %M 38848916 %F 10.753 %R 10.1016/j.scitotenv.2024.173782 %X The pollution burdens and compositions of atmospheric brown carbon (BrC) that determine their impacts on climate-health-ecosystems have not been well studied, particularly in some mega-economic coastal areas. Herein, atmospheric BrC samples synchronously collected from urban Shanghai (SH) and Huaniao Island (HNI) in the East China Sea during winter were characterized through ultrahigh-performance liquid chromatography-diode array detector-high resolution mass spectrometry (UHPLC-DAD-HRMS). The three polarity-dependent BrC fractions exhibited significant differences in both light absorption and chromophore composition. The average light absorption coefficients of BrC subfractions at 365 nm in SH were 2.6-3.7 times higher than those in HNI. The water-insoluble BrC (WIS-BrC) and humic-likes BrC (HULIS-BrC) dominated the total BrC absorption in SH (45 ± 7 %) and HNI (43 ± 6 %), respectively. Compared with SH, the higher O/Cw, lower molecule conjugation degree, and reduced mass absorption efficiency at 365 nm (MAE365) in HNI imply a potential bleaching mechanism during the transportation oxidation process. Thousands of BrC chromophores were detected at both sites. >20 major chromophores with strong absorption were unambiguously identified in HULIS-BrC and accounted for ∼40 % of the HULIS light absorption at 365 nm at both sites. These chromophores in SH HULIS-BrC featured oxygenated aromatics and nitroaromatics, while alkyl benzenesulfonic acids with emissions from cargo ships were found in HNI HULIS-BrC. Moreover, 22 major chromophores identified in WIS-BrC included alkaloids, polyaromatic hydrocarbons (PAHs), and carbonyl oxygenated PAHs, contributing 39 % and 49 % of the WIS-BrC light absorption at 365 nm in SH and HNI, respectively. Ascertaining the molecular-specific optical properties of BrC chromophores over the mega-economic coastal area is helpful for the predictive understanding of the sources and evolution of BrC, as well as its atmospheric behavior from land to sea.