%0 Journal Article %T Unraveling the role of Mn(V)/Mn(III) in the enhanced permanganate oxidation under Vis-LED radiation. %A Mai J %A Zeng G %A Jiang M %A Su P %A Lv Q %A Li W %A Hou X %A Liu M %A Ma J %A Yang T %J Sci Total Environ %V 944 %N 0 %D 2024 Sep 20 %M 38848904 %F 10.753 %R 10.1016/j.scitotenv.2024.173655 %X A novel approach of visible light-emitting diode (Vis-LED) radiation was employed to activate permanganate (Mn(VII)) for efficient organic micropollutant (OMP) removal. The degradation rates of OMPs by Vis-LED/Mn(VII) were 2-5.29 times higher than those by Mn(VII) except for benzoic acid and atrazine. Increasing wavelengths (445-525 nm) suppressed the degradation of diclofenac (DCF) and 4-chlorophenol (4-CP) owing to the decreased quantum yields of Mn(VII). Comparatively, light intensity and Mn(VII) dosage had a positive effect on the degradation of DCF and 4-CP. Experimental data revealed that Mn(V) dominated the DCF degradation whereas Mn(III) was the active oxidant in the 4-CP degradation. Mn(V) and Mn(III) formed from the photo-decomposition of Mn(VII), meanwhile, Mn(III) also formed from the Mn(V) photo-decomposition. The increase in solution pH inhibited DCF degradation but had a positive impact on 4-CP degradation, mainly due to the changing speciation of DCF and 4-CP. Inorganic anions (Cl- and HCO3-) had little impact on DCF and 4-CP degradation, while humic acid (HA) showed a positive impact because of the π-π interaction between HA and DCF/4-CP. The transformation products of DCF and 4-CP were identified and transformation pathways were proposed. Finally, the Vis-LED/Mn(VII) exhibited great degradation performance in various authentic waters. Overall, this study boosts the development of Mn(VII)-based oxidation processes.