%0 Journal Article %T Tanshinone IIA Liposomes Treat Doxorubicin-Induced Glomerulonephritis by Modulating the Microenvironment of Fibrotic Kidneys. %A Dong T %A Yang N %A Qin J %A Zhao C %A Gao T %A Ma H %A Zhu C %A Xu H %J Mol Pharm %V 21 %N 7 %D 2024 Jul 1 %M 38848439 %F 5.364 %R 10.1021/acs.molpharmaceut.4c00042 %X Renal fibrosis plays a key role in the pathogenesis of chronic kidney disease (CKD), in which the persistent high expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) contributes to the progression of CKD to renal failure. In order to improve the solubility, bioavailability, and targeting of tanshinone IIA (Tan IIA), a novel targeting material, aminoethyl anisamide-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphate ethanolamine (AEAA-PEG-DSPE, APD) modified Tan IIA liposomes (APD-Tan IIA-L) was constructed. An animal model of glomerulonephritis induced by doxorubicin in BALB/c mice was established. APD-Tan IIA-L significantly decreased blood urea nitrogen and serum creatinine (SCr), and the consequences of renal tissue oxidative stress indicators showed that APD-Tan IIA-L downregulated malondialdehyde, upregulated superoxide dismutase, catalase, and glutathione peroxidase. Masson's trichrome staining showed that the deposition of collagen in the APD-Tan IIA-L group decreased significantly. The pro-fibrotic factors (fibronectin, collagen I, TGF-β1, and α-SMA) and epithelial-mesenchymal transition marker (N-cadherin) were significantly inhibited by APD-Tan IIA-L. By improving the microenvironment of fibrotic kidneys, APD-Tan IIA-L attenuated TGF-β1-induced excessive proliferation of fibroblasts and alleviated oxidative stress damage to the kidney, providing a new strategy for the clinical treatment of renal fibrosis.