%0 Journal Article %T Bisphenol a accelerates the glucolipotoxicity-induced dysfunction of rat insulinoma cell lines: An implication for a potential risk of environmental bisphenol a exposure for individuals susceptible to type 2 diabetes. %A Huang C %A Chen X %A Ouyang Z %A Meng L %A Liu J %A Pang Q %A Fan R %J Toxicol In Vitro %V 99 %N 0 %D 2024 Aug 4 %M 38844119 %F 3.685 %R 10.1016/j.tiv.2024.105866 %X Epidemiological studies have suggested a correlation between bisphenol A (BPA) and type 2 diabetes (T2DM). The effects of BPA on β-cell dysfunction may reveal the risks from an in vitro perspective. We used the rat insulinoma (INS-1) cell lines (a type of β-cells) to set up normal or damaged models (DM), which were exposed to various concentrations of BPA (0.001, 0.01, 0.1, 1, 10 and 100 μM). An increase in reactive oxygen species (ROS) and apoptosis, and a decrease in cell viability were observed in INS-1 cells exposed to high doses of BPA for 48 h. Interestingly, exposure to lower doses of BPA for 24 h resulted in increased ROS levels and apoptosis rates in INS-1 in the DM group, along with decreased cell viability, suggesting that BPA exerts toxicity to INS-1 cells, particularly to the DM group. Insulin levels and Glut2 expression, glucose consumption, intracellular Ca2+ and insulin secretion were increased in INS-1 cells after 48 h exposure to high dose of BPA. Stronger effects were observed in the DM group, even those exposed to low doses of BPA for 24 h. Moreover, BPA inhibited high glucose-stimulated insulin secretion in these cells. Our research suggests that low doses of BPA exacerbate the dysfunction caused by glucolipotoxicity, implying environmental BPA exposure poses a risk for individuals with prediabetes or T2DM.