%0 Journal Article %T Identification of Enterococcus spp. from food sources by matrix-assisted laser desorption ionization-time of flight mass spectrometry and characterization of virulence factors, antibiotic resistance, and biofilm formation. %A Wang C %A El-Telbany M %A Lin Y %A Zhao J %A Maung AT %A Abdelaziz MNS %A Nakayama M %A Masuda Y %A Honjoh KI %A Miyamoto T %J Int J Food Microbiol %V 420 %N 0 %D 2024 Aug 2 %M 38843647 %F 5.911 %R 10.1016/j.ijfoodmicro.2024.110768 %X The continuous detection of multi-drug-resistant enterococci in food source environments has aroused widespread concern. In this study, 198 samples from chicken products, animal feces, raw milk, and vegetables were collected in Japan and Egypt to investigate the prevalence of enterococci and virulence characterization. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed for species identification and taxonomic analysis of the isolates. The results showed that the rates of most virulence genes (efaA, gelE, asa1, ace, and hyl) in the Japanese isolates were slightly higher than those in the Egyptian isolates. The rate of efaA was the highest (94.9 %) among seven virulence genes detected, but the cylA gene was not detected in all isolates, which was in accordance with γ-type hemolysis phenotype. In Enterococcus faecalis, the rate of kanamycin-resistant strains was the highest (84.75 %) among the antibiotics tested. Moreover, 78 % of E. faecalis strains exhibited multi-drug resistance. Four moderately vancomycin-resistant strains were found in Egyptian isolates, but none were found in Japanese isolates. MALDI-TOF MS analysis correctly identified 98.5 % (68/69) of the Enterococcus isolates. In the principal component analysis dendrogram, strains isolated from the same region with the same virulence characteristics and similar biofilm-forming abilities were characterized by clustered distribution in different clusters. This finding highlights the potential of MALDI-TOF MS for classifying E. faecalis strains from food sources.