%0 Journal Article %T Integration of Epigenome and Lactylome Reveals the Regulation of Lipid Production in Nannochloropsis oceanica. %A Ouyang L %A Wang J %A Zhu H %A Wu Y %A Wei L %J J Agric Food Chem %V 0 %N 0 %D 2024 Jun 6 %M 38842303 %F 5.895 %R 10.1021/acs.jafc.4c01807 %X Lysine lactylation (Kla) is a kind of novel post-translational modification (PTM) that participates in gene expression and various metabolic processes. Nannochloropsis has a remarkable capacity for triacylglycerol (TAG) production under nitrogen stress. To elucidate the involvement of lactylation in lipid synthesis, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) and mRNA-seq analyses to monitor lactylation modifications and transcriptome alterations in Nannochloropsis oceanica. In all, 2057 genes showed considerable variation between nitrogen deprivation (ND) and nitrogen repletion (NR) conditions. Moreover, a total of 5375 differential Kla peaks were identified, including 5331 gain peaks and 44 loss peaks under ND vs NR. The differential Kla peaks were primarily distributed in the promoter (≤1 kb) (71.07%), 5'UTR (22.64%), and exon (4.25%). Integrative analysis of ChIP-seq, transcriptome, and previous proteome and lactylome data elucidates the potential mechanism by which lactylation promotes lipid accumulation under ND. Lactylation facilitates autophagy and protein degradation, leading to the recycling of carbon into the tricarboxylic acid (TCA) cycle, thereby providing carbon precursors for lipid synthesis. Additionally, lactylation induces the redirection of carbon from membrane lipids to TAG by upregulating lipases and enhancing the TCA cycle and β-oxidation pathways. This research offers a new perspective for the investigation of lipid biosynthesis in Nannochloropsis.