%0 Journal Article %T Thymol's modulation of cellular macromolecules, oxidative stress, DNA damage, and NF-kB/caspase-3 signaling in the liver of imidacloprid-exposed rats. %A Abdelgawad FE %A Abd El-Rahman GI %A Behairy A %A Abd-Elhakim YM %A Saber TM %A Metwally MMM %A El-Fatah SSA %A Samaha MM %A Saber T %A Aglan MA %J Environ Toxicol Pharmacol %V 109 %N 0 %D 2024 Jun 3 %M 38838874 %F 5.785 %R 10.1016/j.etap.2024.104492 %X We evaluated whether thymol (THY) (30 mg/kg b.wt) could relieve the adverse effects of the neonicotinoid insecticide imidacloprid (IMD) (22.5 mg/kg b.wt) on the liver in a 56-day oral experiment and the probable underlying mechanisms. THY significantly suppressed the IMD-associated increase in hepatic enzyme leakage. Besides, the IMD-induced dyslipidemia was considerably corrected by THY. Moreover, THY significantly repressed the IMD-induced hepatic oxidative stress, lipid peroxidation, DNA damage, and inflammation. Of note, the Feulgen, mercuric bromophenol blue, and PAS-stained hepatic tissue sections analysis declared that treatment with THY largely rescued the IMD-induced depletion of the DNA, total proteins, and polysaccharides. Moreover, THY treatment did not affect the NF-kB p65 immunoexpression but markedly downregulated the Caspase-3 in the hepatocytes of the THY+IMD-treated group than the IMD-treated group. Conclusively, THY could efficiently protect against IMD-induced hepatotoxicity, probably through protecting cellular macromolecules and antioxidant, antiapoptotic, and anti-inflammatory activities.