%0 Journal Article %T Innate acting memory Th1 cells modulate heterologous diseases. %A Rakebrandt N %A Yassini N %A Kolz A %A Schorer M %A Lambert K %A Goljat E %A Estrada Brull A %A Rauld C %A Balazs Z %A Krauthammer M %A Carballido JM %A Peters A %A Joller N %J Proc Natl Acad Sci U S A %V 121 %N 24 %D 2024 Jun 11 %M 38838013 %F 12.779 %R 10.1073/pnas.2312837121 %X Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.