%0 Journal Article %T A fluorescence anisotropy-based competition assay to identify inhibitors against ricin and Shiga toxin ribosome interactions. %A Dutta A %A Szekely Z %A Guven H %A Li XP %A McLaughlin JE %A Tumer NE %J Anal Biochem %V 692 %N 0 %D 2024 Sep 31 %M 38825159 %F 3.191 %R 10.1016/j.ab.2024.115580 %X Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.