%0 Journal Article %T Genotoxicity assessments of N-nitrosoethylisopropylamine (NEIPA) and N-nitrosodiisopropylamine (NDIPA) in the C57BL/6J mouse. %A Ye Q %A Geng X %A Jiang H %A Qin C %A Wu H %A Wang S %A Wen H %J Mutat Res Genet Toxicol Environ Mutagen %V 896 %N 0 %D 2024 May-Jun %M 38821676 %F 3.189 %R 10.1016/j.mrgentox.2024.503763 %X N-Nitrosamines, known as drug impurities and suspected carcinogens, have drawn significant public concern. In response to drug regulatory needs, the European Medicines Agency (EMA) has previously proposed a carcinogenic potency categorization approach based on the N-nitrosamine α-hydroxylation hypothesis, i.e., that N-nitrosamine mutagenicity increases with the number of α-hydrogen atoms. However, this structure-activity relationship has not been fully tested in vivo. NEIPA (N-nitrosoethylisopropylamine) and NDIPA (N-nitrosodiisopropylamine) are small N-Nitrosamines with similar structures, differing in that the former compound has an additional α-hydrogen atom. In this study, NEIPA and NEIPA doses, 25-100 mg/kg, were administered orally to C57BL/6 J mice for seven consecutive days, and their mutation and DNA damage effects were compared. Compared with NDIPA, the mutagenicity and DNA damage potencies of NEIPA (which contains one more α-hydrogen) were much greater. These differences may be related to their distinct metabolic pathways and target organs. This case study confirms the role of α-hydroxyl modification in the mutagenicity of nitrosamines, with oxidation at the α-hydrogen being a crucial step in the formation of mutagens from N-Nitrosamines, and can inform mutagenicity risk assessment and the formulation of regulatory standards for N-nitrosamine impurities.