%0 Journal Article %T Ultraviolet light and riboflavin accelerates red blood cell dysfunction in vitro and in a guinea pig transfusion model. %A Baek JH %A Shin HKH %A Xu F %A Zhang X %A Williams MC %A Gao Y %A Vostal JG %A Buehler PW %A Villa C %A D'Agnillo F %J Blood Transfus %V 22 %N 4 %D 2024 Jul 15 %M 38814883 %F 5.752 %R 10.2450/BloodTransfus.718 %X BACKGROUND: Quality assessment of modified or processed red blood cell (RBC) components, such as pathogen-reduced RBCs, using only in vitro testing may not always be predictive of in vivo performance. Mouse or rat in vivo models are limited by a lack of applicability to certain aspects of human RBC biology. Here, we used a guinea pig model to study the effects of riboflavin combined with UV light on the integrity of RBCs in vitro and following transfusion in vivo.
METHODS: Guinea pig RBCs were collected from whole blood (WB) treated with varying UV doses (10, 20, 40 or 80 J/mL) in the presence of riboflavin (UVR-RBCs). In vitro tests for UVR-RBCs included hemolysis, osmotic fragility, and cellular morphology by scanning electron microscopy. Guinea pigs transfused with one-day post-treatment UVR-RBCs were evaluated for plasma hemoglobin (Hb), non-transferrin bound iron (NTBI), total iron and Perls-detectable hemosiderin deposition in the spleen and kidney, and renal uptake of Hb.
RESULTS: Acute RBC injury was dose dependently accelerated after treatment with UV light in the presence of riboflavin. Aberrant RBC morphology was evident at 20, 40, and 80 J/mL, and membrane lysis with Hb release was prominent at 80 J/mL. Guinea pigs transfused with 40 and 80 J/mL UVR-RBCs showed increased plasma Hb levels, and plasma NTBI was elevated in all UVR-RBC groups (10-80 J/mL). Total iron levels and Perls-hemosiderin staining in spleen and kidney as well as Hb uptake in renal proximal tubules were increased 8 hours post-transfusion with 40 and 80 J/mL UVR-RBCs.
CONCLUSIONS: UVR-RBCs administered to guinea pigs increased markers of intravascular and extravascular hemolysis in a UV dose-dependent manner. This model may allow for the discrimination of RBC injury during testing of extensively processed RBCs intended for transfusion.