%0 Journal Article %T Multiscale experimental insights into vacuum drying of sludge for enhanced energy efficiency and emission control. %A Yu Y %A Sun X %A Zhang H %A Wu W %A Zhang T %A Ge S %J Sci Total Environ %V 939 %N 0 %D 2024 Aug 20 %M 38810745 %F 10.753 %R 10.1016/j.scitotenv.2024.173592 %X This study provides a comprehensive analysis of the vacuum drying process for sludge drying, with a focus on optimizing energy efficiency and emission control. The study used both lab-scale static and pilot-scale vacuum drying systems to test various parameters like vacuum levels, heat source temperatures, and sludge thicknesses. The results indicated that optimal drying conditions were achieved at a vacuum level of -0.06 MPa, a heat temperature of 140 °C, and a sludge thickness of 3.4 mm, where the drying rate reaches 0.13278 g·g-1·min-1. The study underscores the significant influence of vacuum level, temperature, and sludge thickness on drying rates. The Page model was used to analyze drying kinetics, elucidating how changes in these parameters affect drying characteristics. Furthermore, the study also examined the pollutant emissions and energy efficiency at the pilot scale. It found that high vacuum environments could efficiently dry sludge using low-temperature heat source, leading to average energy consumption per unit evaporation of 3020.29 kJ/kg, which is lower compared to traditional methods. By harnessing low-grade industrial waste heat, this can be further reduced to 875.76 kJ/kg. This study offers valuable insights for sustainable sludge management systems, highlighting the environmental and economic benefits of vacuum drying technology. The detailed experimental approach and thorough analysis make a significant contribution to the field of the sludge drying.