%0 Journal Article %T Self-Assembly of Discrete Multi-Chromophoric Systems. %A Daniel J %A Satheesh AP %A Kartha Kalathil K %J Chemistry %V 30 %N 42 %D 2024 Jul 25 %M 38803092 %F 5.02 %R 10.1002/chem.202401278 %X Self-assembly of chromophoric systems is a prerequisite to create well-ordered, processable nanomaterials with multiple functionalities. In the past two decades, the field of functional organic materials has primarily focused on systems featuring only one type of dye/π-conjugated unit. Consequently, many reports with mechanistic insights on the self-assembly of the dyes featuring different molecular packing have been reported. Subsequently, we have witnessed several attempts to organize the multi-chromophoric systems in solution and solid-state via different approaches using self-assembly as a tool. Incorporation of more than one dye is important in creating materials with tuneable optoelectronic properties. Consequently, self-assembly of more than one chromophoric systems have been investigated to some extent. This review aims to discuss the self-assembled materials derived from discrete π-conjugated systems comprising more than one dye units connected through covalent bonding (multi-chromophoric systems). Molecular design of various multi-chromophoric systems leading to the formation of crystals, liquid crystals and supramolecular polymers have been correlated with corresponding properties. We envisage that classification of self-assembled multi-chromophoric systems, with a note on tuneable optoelectronic properties, can provide a deeper understanding on the molecular design strategies, which is important in the fabrication of functional organic materials with optimum performances.