%0 Journal Article %T Consanguinty and its impact on health and genome dynamic: An example from Tunisia. %A Mezzi N %A Abassi N %A Fatnassi F %A Abdelhak S %A Romdhane L %J Tunis Med %V 102 %N 5 %D 2024 May 5 %M 38801282 暂无%R 10.62438/tunismed.v102i5.4787 %X The genetic disease spectrum in Tunisia arises from the founder effect, genetic drift, selection, and consanguinity. The latter represents a deviation from panmixia, characterized by a non-random matrimonial choice that may be subject to several rules, such as socio-cultural, economic, or other factors. This shifts the genetic structure away from the Hardy-Weinberg equilibrium, increasing homozygous genotypes and decreasing heterozygotes, thus raising the frequency of autosomal recessive diseases. Similar to other Arab populations, Tunisia displays high consanguinity rates that vary geographically. Approximately 60% of reported diseases in Tunisia are autosomal recessive, with consanguinity possibly occurring in 80% of families for a specific disease. In inbred populations, consanguinity amplifies autosomal recessive disease risk, yet it does not influence autosomal dominant disease likelihood but rather impacts its phenotype. Consanguinity is also suggested to be a major factor in the homozygosity of deleterious variants leading to comorbid expression. At the genome level, inbred individuals inherit homozygous mutations and adjacent genomic regions known as runs of homozygosity (ROHs). Short ROHs indicate distant inbreeding, while long ROHs refer to recent inbreeding. ROHs are distributed rather irregularly across the genome, with certain short regions featuring an excess of ROH, known as ROH islands. In this review, we discuss consanguinity's impact on population health and genome dynamics, using Tunisia as a model.