%0 Journal Article %T Design, synthesis, and biological evaluation of 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamides as a potential EGR-1 inhibitor for targeted therapy of atopic dermatitis. %A Ahn S %A Yeo H %A Jung E %A Lee Y %A Koh D %A Lee H %A Han Lee Y %A Lim Y %A Young Shin S %J Bioorg Chem %V 148 %N 0 %D 2024 Jul 21 %M 38795583 %F 5.307 %R 10.1016/j.bioorg.2024.107481 %X Atopic dermatitis is a chronic inflammatory skin disease characterized by intense itching and frequent skin barrier dysfunctions. EGR-1 is a transcription factor that aggravates the pathogenesis of atopic dermatitis by promoting the production of various inflammatory cytokines. Three 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamides (IT21, IT23, and IT25) were identified as novel inhibitors of EGR-1 DNA-binding activity. In silico docking experiments were performed to elucidate the binding conditions of the EGR-1 zinc-finger (ZnF) DNA-binding domain. Electrophoretic mobility shift assays confirmed the targeted binding effect on the EGR-1 ZnF DNA-binding domain, leading to dose-dependent dissociation of the EGR-1-DNA complex. At the functional cellular level, IT21, IT23, and IT25 effectively reduced mRNA expression of TNFα-induced EGR-1-regulated inflammatory genes, particularly in HaCaT keratinocytes inflamed by TNFα. In the in vivo efficacy study, IT21, IT23, and IT25 demonstrated the potential to alleviate atopic dermatitis-like skin lesions in the ear skin of BALB/c mice. These findings suggest that targeting the EGR-1 ZnF DNA-binding domain with 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide derivatives (IT21, IT23, and IT25) could serve as lead compounds for the development of potential therapeutic agents against inflammatory skin disorders, including atopic dermatitis.