%0 Journal Article %T Establishing a 3D-cultured system based on alginate-hydrogel embedding benefits the in vitro maturation of porcine Oocytes. %A Qiu P %A Zhang Y %A Lv M %A Wang L %A Shi D %A Luo C %J Theriogenology %V 225 %N 0 %D 2024 Sep 1 %M 38788627 %F 2.923 %R 10.1016/j.theriogenology.2024.05.031 %X The in vitro maturation (IVM) quality of oocytes is directly related to the subsequent developmental potential of embryos and a fundamental of in vitro embryo production. However, conventional IVM methods fail to maintain the gap-junction intercellular communication (GJIC) between cumulus-oocyte complexes (COCs), which leads to insufficient oocyte maturation. Herein, we investigated the effects of three different three-dimensional (3D) culture methods on oocyte development in vitro, optimized of the alginate-hydrogel embedding method, and assessed the effects of the alginate-hydrogel embedding method on subsequent embryonic developmental potential of oocytes after IVM and parthenogenetic activation (PA). The results showed that Matrigel embedding and alginate-hydrogel embedding benefited the embryonic developmental potential of oocytes after IVM and PA. With the further optimization of alginate-hydrogel embedding, including crosslinking and decrosslinking of parameters, we established a 3D culture system that can significantly increase oocyte maturation and the blastocyst rate of embryos after PA (27.2 ± 1.5 vs 36.7 ± 2.8, P < 0.05). This 3D culture system produced oocytes with markedly increased mitochondrial intensity and membrane potential, which reduced the abnormalities of spindle formation and cortical granule distribution. The alginate-hydrogel embedding system can also remarkably enhance the GJIC between COCs. In summary, based on alginate-hydrogel embedding, we established a 3D culture system that can improve the IVM quality of porcine oocytes, possibly by enhancing GJIC.