%0 Journal Article %T Investigation of calcium variations in single cells and the impact of Yoda1 on osteocytes by ICP-OES. %A Guo X %A Lin CY %A Alavi S %A You L %A Mostaghimi J %J Anal Chim Acta %V 1281 %N 0 %D 2023 Nov 15 %M 38783744 %F 6.911 %R 10.1016/j.aca.2023.341906 %X BACKGROUND: Detection of elements in individual cells by inductively coupled plasma (ICP) spectrometry has recently attracted significant interest in biological research, due to the unique ability of ICP spectrometry for trace element analysis. However, performing single-cell analysis using ICP optical emission spectrometry (ICP-OES) remains a challenge due to the small size and discrete nature of cells. This is while ICP-OES can serve as a cost-effective and label-free method for this purpose. Therefore, it is necessary to improve the current ICP-OES technique to facilitate the detection of elements in single cells, thereby unlocking novel applications.
RESULTS: A new conical ICP torch, which has been illustrated to offer better analytical performance than the conventional ones, was applied to achieve the detection of calcium in single micro-sized cells. A new heated chamber was designed and coupled with a high-efficiency nebulizer as the sample introduction system. For the detection of single SiO2 particles, the number of particle events obtained by the new sample introduction system was found to be up to 9 times higher than that of the conventional system without sacrificing the signal intensity. Subsequently, calcium in human breast cancer cells (MDA-MB-231), mice breast cancer cells (Py8119), and mice osteocytes (MLO-Y4) was successfully detected using the new ICP-OES system. The cell detection efficiency turned out to be around 2%-3% which is much higher than that the reported values in previous single-cell ICP-OES research. Finally, as a new application, the effect of Yoda1, a recently identified activator of Piezo1 calcium channel, on osteocytes was investigated. The calcium content in Yoda1-treated MLO-Y4 cells was seen increase by 36% compared to the control sample.
CONCLUSIONS: This research reveals the capability of ICP-OES in single-cell analysis for micro-sized cells which was made possible by the new conical ICP torch and the new sample introduction system. The ability to detect calcium in single mammalian cells enables the first ever application of this technique to assess the impact of the Yoda1 activator on the calcium level in osteocytes.