%0 Journal Article %T Using Dual-source Photon-counting Detector CT to Simultaneously Quantify Fat and Iron Content: A Phantom Study. %A Hao W %A Xu Z %A Lin H %A Yan F %J Acad Radiol %V 0 %N 0 %D 2024 May 20 %M 38772799 %F 5.482 %R 10.1016/j.acra.2024.04.044 %X OBJECTIVE: To evaluate the feasibility of using photon-counting detector computed tomography (PCD CT) to simultaneously quantify fat and iron content MATERIALS AND METHODS: Phantoms with pure fat, pure iron and fat-iron deposition were scanned by two tube voltages (120 and 140 kV) and two image quality (IQ) settings (80 and 145). Using an iron-specific three-material decomposition algorithm, virtual noniron (VNI) and virtual iron content (VIC) images were generated at quantum iterative reconstruction (QIR) strength levels 1-4.
RESULTS: Significant linear correlations were observed between known fat content (FC) and VNI for pure fat phantoms (r = 0.981-0.999, p < 0.001) and between known iron content (IC) and VIC for pure iron phantoms (r = 0.897-0.975, p < 0.001). In fat-iron phantoms, the measurement for fat content of 5-30% demonstrated good linearity between FC and VNI (r = 0.919-0.990, p < 0.001), and VNI were not affected by 75, 150, and 225 µmol/g iron overload (p = 0.174-0.519). The measurement for iron demonstrated a linear range of 75-225 µmol/g between IC and VIC (r = 0.961-0.994, p < 0.001) and VIC was not confounded by the coexisting 5%, 20%, and 30% fat deposition (p = 0.943-0.999). The Bland-Altman of fat and iron measurements were not significantly different at varying tube voltages and IQ settings (all p > 0.05). No significant difference in VNI and VIC at QIR 1-4.
CONCLUSIONS: PCD CT can accurately and simultaneously quantify fat and iron, including scan parameters with lower radiation dose.