%0 Journal Article %T Inactivation of cGAS signaling pathway mediated by TDP-43 deficiency protects microglia from hypoxia/reoxygenation induced injury. %A Zhu Y %A Sun C %J Brain Res %V 1839 %N 0 %D 2024 Sep 15 %M 38761845 %F 3.61 %R 10.1016/j.brainres.2024.148999 %X BACKGROUND: Microglia are damaged during cerebral ischemia-reperfusion (I/R). This study was performed to investigate the regulatory effect of tAR DNA-binding protein-43 (TDP-43) on microglia after cerebral I/R in vitro and in vivo.
METHODS: The hypoxia/reoxygenation (H/R) treated microglia and rats with middle cerebral artery occlusion surgery were constructed respectively. The TDP-43 expression in brain tissues and microglia of each group was evaluated by qPCR and western blotting methods. Cell viability and cell apoptosis were combined to evaluate the degree of cell injury. As for animal experiments, neurological score and infarct volume were obtained to evaluate neurological injury.
RESULTS: The levels of TDP-43 in the brain tissues of I/R group were higher than that in sham group. Both TDP-43 and Iba1, a typical microglia marker, were expressed in the brain tissues. TDP-43 was also elevated in microglia with H/R treatment. Inhibition of TDP-43 significantly down-regulated neurological deficit scores of rats after I/R surgery, and weakened the H/R treatment induced injury by promoting cell viability, inhibiting cell apoptosis, down-regulating IL-6 and iNOS levels, and up-regulating Arg-1 and IL-10 levels. Inactivation of cGAS pathway mediated by TDP-43 knockdown protects microglia from H/R treatment induced injury.
CONCLUSIONS: The highly expressed TDP-43 level is associated with cerebral I/R, and inhibition of TDP-43 protects microglia from H/R induced injury through cGAS pathway in vitro and in vivo.