%0 Journal Article %T Synthesis and Characterizations of MoS2 Nanoflowers and Spectroscopic Study of their Interaction with Bovine Serum Albumin. %A Ma Y %A Guan Q %A Cui J %A Jiang T %A Zhu Y %A Zhang F %A Ma G %J Chem Biodivers %V 21 %N 7 %D 2024 Jul 10 %M 38726746 %F 2.745 %R 10.1002/cbdv.202400634 %X Molybdenum disulfide nanoflowers (MoS2 NFs) were prepared by hydrothermal method. The prepared MoS2 NFs was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), specific surface areas, Raman and X-ray photoelectron spectroscopy (XPS). The characterization results show that the flower-like spherical MoS2 is composed of many ultra-thin nanosheets with an average diameter of about 300-400 nm. MoS2 NFs also exhibits excellent UV-vis absorption and high fluorescence intensity. In order to explore the biological behavior of MoS2 NFs, the interaction between MoS2 NFs and bovine serum albumin (BSA) was studied by UV-Vis absorption, fluorescence, synchronous fluorescence spectra, and cyclic voltammetry. The results of absorption and fluorescence show that MoS2 NFs and BSA interact strongly through the formation of complexes in the ground state, and the static quenching is the main mechanism. The Stern-Volmer constant and the quenching constant was calculated about 3.79×107 L mol-1 and 3.79×1015 L mol-1 s-1, respectively. The synchronous fluorescence implied that MoS2 in the complex may mainly bind to tryptophan residues of BSA. The cyclic voltammograms indicated that the addition of BSA makes electron reduction of MoS2 NFs more difficult than the corresponding free state. The results show that hydrophobic forces play a major role in the binding interaction between BSA and MoS2 NFs.