%0 Journal Article %T Peripheral 5-HT Mediates Gonadotropin-Inhibitory Hormone-Induced Feeding Behavior and Energy Metabolism Disorder in Chickens via the 5-HT2C Receptor. %A Song X %A Xu W %A Li Z %A Zhang X %A Liu C %A Han K %A Chen L %A Shi Y %A Xu C %A Han D %A Luo R %A Cao Y %A Li Q %A Yang H %A Lu Q %A Qin J %A Wang X %A Hu C %A Li X %J Neuroendocrinology %V 114 %N 8 %D 2024 May 8 %M 38718758 %F 5.135 %R 10.1159/000539238 %X BACKGROUND: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown.
METHODS: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder.
RESULTS: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens.
CONCLUSIONS: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.