%0 Journal Article %T Engineering the β-galactosidase from Aspergillus oryzae for making lactose-free and no-sugar-added yogurt. %A Miao M %A Li S %A Yang S %A Yan Q %A Xiang Z %A Jiang Z %J J Dairy Sci %V 107 %N 9 %D 2024 Sep 24 %M 38670341 %F 4.225 %R 10.3168/jds.2023-24310 %X Yogurt usually contains 5% to 7% sugar and 3% to 5% lactose. As β-galactosidases can hydrolyze lactose and improve sweetness, they have the potential to produce lactose-free (LF) and no-sugar-added (NSA) yogurt. In this study, the β-galactosidase AoBgal35A from Aspergillus oryzae was engineered by site-saturation mutagenesis. Results of 19 variants of T955 residue showed that the lactose hydrolysis rate of T955R-AoBgal35A was up to 90.7%, which is much higher than the 78.5% of the wild type. Moreover, the optimal pH of T955R-AoBgal35A was shifted from pH 4.5 to pH 5.5, and the optimal temperature decreased from 60°C to 50°C. The mutant T955R-AoBgal35A was successfully expressed in Komagataella pastoris, which produced extracellularly 4,528 U/mL of β-galactosidase activity. The mutant T955R-AoBgal35A was used to produce LF yogurt. The Streptococcus thermophilus count of LF yogurt increased from 7.9 to 9.5 log cfu/g, which is significantly higher than that of the control group (8.9 log cfu/g). The residual lactose content of LF yogurt was 0.13%, meeting the requirements of the national standard in China for the "lactose-free" label (<0.5%). Furthermore, sugar in yogurt was replaced by whey powder to produce LF-NSA yogurt. The optimal addition content of whey powder was 7.5%. The texture, water-holding capacity, and titratable acidity of LF and LF-NSA yogurt achieved good shelf life stability. Therefore, this study provides an insight for technological implications of β-galactosidases in the dairy industry.