%0 Journal Article %T Angiotensin receptors and α1B-adrenergic receptors regulate native IK(ACh) and phosphorylation-deficient GIRK4 (S418A) channels through different PKC isoforms. %A Inderwiedenstraße L %A Kienitz MC %J Pflugers Arch %V 476 %N 7 %D 2024 Jul 24 %M 38658400 %F 4.458 %R 10.1007/s00424-024-02966-5 %X Signaling of G protein-activated inwardly rectifying K+ (GIRK) channels is an important mechanism of the parasympathetic regulation of the heart rate and cardiac excitability. GIRK channels are inhibited during stimulation of Gq-coupled receptors (GqPCRs) by depletion of phosphatidyl-4,5-bisphosphate (PIP2) and/or channel phosphorylation by protein kinase C (PKC). The GqPCR-dependent modulation of GIRK currents in terms of specific PKC isoform activation was analyzed in voltage-clamp experiments in rat atrial myocytes and in CHO or HEK 293 cells. By using specific PKC inhibitors, we identified the receptor-activated PKC isoforms that contribute to phenylephrine- and angiotensin-induced GIRK channel inhibition. We demonstrate that the cPKC isoform PKCα significantly contributes to GIRK inhibition during stimulation of wildtype α1B-adrenergic receptors (α1B-ARs). Deletion of the α1B-AR serine residues S396 and S400 results in a preferential regulation of GIRK activity by PKCβ. As a novel finding, we report that the AT1-receptor-induced GIRK inhibition depends on the activation of the nPKC isoform PKCε whereas PKCα and PKCβ do not mainly participate in the angiotensin-mediated GIRK reduction. Expression of the dominant negative (DN) PKCε prolonged the onset of GIRK inhibition and significantly reduced AT1-R desensitization, indicating that PKCε regulates both GIRK channel activity and the strength of the receptor signal via a negative feedback mechanism. The serine residue S418 represents an important phosphorylation site for PKCε in the GIRK4 subunit. To analyze the functional impact of this PKC phosphorylation site for receptor-specific GIRK channel modulation, we monitored the activity of a phosphorylation-deficient (GIRK4 (S418A)) GIRK4 channel mutant during stimulation of α1B-ARs or AT1-receptors. Mutation of S418 did not impede α1B-AR-mediated GIRK inhibition, suggesting that S418 within the GIRK4 subunit is not subject to PKCα-induced phosphorylation. Furthermore, activation of angiotensin receptors induced pronounced GIRK4 (S418A) channel inhibition, excluding that this phosphorylation site contributes to the AT1-R-induced GIRK reduction. Instead, phosphorylation of S418 has a facilitative effect on GIRK activity that was abolished in the GIRK4 (S418A) mutant. To summarize, the present study shows that the receptor-dependent regulation of atrial GIRK channels is attributed to the GqPCR-specific activation of different PKC isoforms. Receptor-specific activated PKC isoforms target distinct phosphorylation sites within the GIRK4 subunit, resulting in differential regulation of GIRK channel activity with either facilitative or inhibitory effects on GIRK currents.