%0 Journal Article %T Opportunity of Patterning in Chemistry. %A Gentili D %A Cavallini M %J Chemistry %V 30 %N 40 %D 2024 Jul 16 %M 38629243 %F 5.02 %R 10.1002/chem.202401219 %X Patterning offers an efficient way to quantitatively enhance and enlarge material properties and functionalities, offering unprecedented opportunities for innovation in various scientific domains. By precisely controlling the spatial arrangement of materials at the micro- and nanoscale, patterning enables the exploitation of inherent material properties in novel ways. In addition, it generates new properties, leading to the development of advanced devices and applications. This article highlights the significant contributions of spatially controlled patterning in chemistry, particularly in generating new functional properties and devices, discussing some representative articles. Examples include the use of unconventional patterning techniques for surface functionalization, as well as the application of spatial confinement in improving material properties and controlling crystallization processes. Furthermore, the discussion extends to creating new devices, such as optical storage media and sensors, through spatial organization of materials.