%0 Meta-Analysis %T Alterations in brain functional connectivity in patients with mild cognitive impairment: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. %A Wang S %A Wang W %A Chen J %A Yu X %J Brain Behav %V 14 %N 4 %D 2024 Apr %M 38616330 暂无%R 10.1002/brb3.3414 %X Emerging evidences suggest that cognitive deficits in individuals with mild cognitive impairment (MCI) are associated with disruptions in brain functional connectivity (FC). This systematic review and meta-analysis aimed to comprehensively evaluate alterations in FC between MCI individuals and healthy control (HC) using functional near-infrared spectroscopy (fNIRS). Thirteen studies were included in qualitative analysis, with two studies synthesized for quantitative meta-analysis. Overall, MCI patients exhibited reduced resting-state FC, predominantly in the prefrontal, parietal, and occipital cortex. Meta-analysis of two studies revealed a significant reduction in resting-state FC from the right prefrontal to right occipital cortex (standardized mean difference [SMD] = -.56; p < .001), left prefrontal to left occipital cortex (SMD = -.68; p < .001), and right prefrontal to left occipital cortex (SMD = -.53; p < .001) in MCI patients compared to HC. During naming animal-walking task, MCI patients exhibited enhanced FC in the prefrontal, motor, and occipital cortex, whereas a decrease in FC was observed in the right prefrontal to left prefrontal cortex during calculating-walking task. In working memory tasks, MCI predominantly showed increased FC in the medial and left prefrontal cortex. However, a decreased in prefrontal FC and a shifted in distribution from the left to the right prefrontal cortex were noted in MCI patients during a verbal frequency task. In conclusion, fNIRS effectively identified abnormalities in FC between MCI and HC, indicating disrupted FC as potential markers for the early detection of MCI. Future studies should investigate the use of task- and region-specific FC alterations as a sensitive biomarker for MCI.