%0 Journal Article %T Selection of microalgae in artificial digestate: Strategies towards an effective phycoremediation. %A Mollo L %A Petrucciani A %A Norici A %J Plant Physiol Biochem %V 210 %N 0 %D 2024 May 5 %M 38615438 %F 5.437 %R 10.1016/j.plaphy.2024.108588 %X Digestate is a complex by-product of anaerobic digestion and its composition depends on the digestor inputs. It can be exploited as a sustainable source of nutrients for microalgae cultivation but its unbalanced composition and toxic elements make the use challenging. Screening algae in a simplified synthetic digestate which mimics the main nutrient constraints of a real digestate is proposed as a reproducible and effective method to select suitable species for real digestate valorisation and remediation. Growth performance, nutrient removal and biomass composition of eight microalgae exposed to high amounts of NH4+, PO4- and organic-C were assessed. Using a score matrix, A. protothecoides, T. obliquus, C. reinhardtii, and E. gracilis were identified as the most promising species. Thus, three strategies were applied to improve outcomes: i) establishment of an algal consortium to improve biomass production, ii) K+ addition to the medium to promote K+ uptake over NH4+ and to reduce potential NH4+ toxicity, iii) P starvation as pretreatment for enhanced P removal by luxury uptake. The consortium was able to implement a short-term response displaying higher biomass production than single species (3.77 and 1.03-1.89 mg mL-1 respectively) in synthetic digestate while maintaining similar nutrient remediation, furthermore, its growth rate was 1.6 times higher than in the control condition. However, the strategies aiming to reduce NH4+ toxicity and higher P removal were not successful except for single cases. The proposed algal screening and the resulting designed consortium were respectively a reliable method and a powerful tool towards sustainable real digestate remediation.