%0 Journal Article %T Allogeneic bone marrow mesenchymal stem cell-derived exosomes alleviate human hypoxic AKI-on-a-Chip within a tight treatment window. %A Çam SB %A Çiftci E %A Gürbüz N %A Altun B %A Korkusuz P %J Stem Cell Res Ther %V 15 %N 1 %D 2024 Apr 10 %M 38600585 %F 8.079 %R 10.1186/s13287-024-03674-8 %X BACKGROUND: Acute hypoxic proximal tubule (PT) injury and subsequent maladaptive repair present high mortality and increased risk of acute kidney injury (AKI) - chronic kidney disease (CKD) transition. Human bone marrow mesenchymal stem cell-derived exosomes (hBMMSC-Exos) as potential cell therapeutics can be translated into clinics if drawbacks on safety and efficacy are clarified. Here, we determined the real-time effective dose and treatment window of allogeneic hBMMSC-Exos, evaluated their performance on the structural and functional integrity of 3D microfluidic acute hypoxic PT injury platform.
METHODS: hBMMSC-Exos were isolated and characterized. Real-time impedance-based cell proliferation analysis (RTCA) determined the effective dose and treatment window for acute hypoxic PT injury. A 2-lane 3D gravity-driven microfluidic platform was set to mimic PT in vitro. ZO-1, acetylated α-tubulin immunolabelling, and permeability index assessed structural; cell proliferation by WST-1 measured functional integrity of PT.
RESULTS: hBMMSC-Exos induced PT proliferation with ED50 of 172,582 µg/ml at the 26th hour. Hypoxia significantly decreased ZO-1, increased permeability index, and decreased cell proliferation rate on 24-48 h in the microfluidic platform. hBMMSC-Exos reinforced polarity by a 1.72-fold increase in ZO-1, restored permeability by 20/45-fold against 20/155 kDa dextran and increased epithelial proliferation 3-fold compared to control.
CONCLUSIONS: The real-time potency assay and 3D gravity-driven microfluidic acute hypoxic PT injury platform precisely demonstrated the therapeutic performance window of allogeneic hBMMSC-Exos on ischemic AKI based on structural and functional cellular data. The novel standardized, non-invasive two-step system validates the cell-based personalized theragnostic tool in a real-time physiological microenvironment prior to safe and efficient clinical usage in nephrology.