%0 Journal Article %T The biological efficacy of Apelin against focal transient cerebral ischemia-reperfusion injury. A systematic review and meta-analysis of animal studies. %A Behrouzifar S %A Esmaily H %J Brain Res %V 1833 %N 0 %D 2024 Jun 15 %M 38552935 %F 3.61 %R 10.1016/j.brainres.2024.148887 %X BACKGROUND: Apelin has been extensively studied, and emerging experimental evidence suggests that Apelin may have effects on stroke by reducing infarct volume and neurological deficits, inhibiting the apoptosis process and reducing brain water content. However, the credibility of the evidence is uncertain. Thus, we aimed to perform a systematic review and meta-analysis to evaluate preclinical studies that used Apelin for the treatment of transient focal cerebral ischemia.
METHODS: Electronic bibliographic databases including PubMed, EMBASE, Scopus, and Google Scholar were searched for finding relevant studies from January 2000 to July 2023. The methodological quality and risk of bias scores for animal studies were calculated based on the CAMARADES and the SYRCLE's RoB tools, respectively. The effect sizes were assessed using Comprehensive Meta-Analysis (CMA) software.
RESULTS: A total of twelve eligible studies were used for the systematic review and meta-analysis. The median scores of study quality and risk of bias were 7.5 out of 10, and 5 out of 10, respectively. Apelin treatment effectively decreased infarct volume (primary outcome) [Hedges' g = 2.72, 95 % CI (1.93, 3.51), p < 0.001], neurological deficit [Hedges' g = 1.76, 95 % CI (0.96, 2.55), p < 0.001], cleaved caspase 3 [Hedges' g = 2.16, 95 % CI (0.87, 3.44), p = 0.001], and apoptotic cell number [Hedges' g = 4.07, 95 % CI (1.25,6.89), p = 0.005] compared with the control group. According to subgroup analysis, more notable neuroprotective effects were observed with intravenous administration than with intracerebroventricular (ICV) administration. Moreover, we determined that effect size of infarct volume was markedly related to the species. The combined measurement of two studies demonstrated that Apelin could reduce BCL2 and TNF-α levels as well as brain water content compared with the control group. However, pooled measurement of two studies showed that no relevancy was discovered between CHOP and altering infarct volume.
CONCLUSIONS: The present meta-analysis was conducted to assess preclinical studies related to Apelin treatment in rodent ischemic stroke. Apelin can exert promising neuroprotective effects by reducing infarct volume, neurological deficit, caspase 3, apoptotic cell number, TNF- α and brain water content and increasing BCL2. The current evidence supports the anti-apoptotic and anti-inflammatory properties of Apelin, but its effectiveness in decreasing CHOP level in animal models of ischemic stroke needs further elucidation. This study was registered within the International Prospective Register of Systematic Reviews (PROSPERO) as number CRD42023460926.