%0 Journal Article %T N-linked α2,6-sialylation of integrin β1 by the sialyltransferase ST6Gal1 promotes cell proliferation and stemness in gestational trophoblastic disease. %A Liu J %A Dong X %A Xie R %A Tang Y %A Thomas AM %A Li S %A Liu S %A Yu M %A Qin H %J Placenta %V 149 %N 0 %D 2024 Apr 11 %M 38490094 %F 3.287 %R 10.1016/j.placenta.2024.03.004 %X BACKGROUND: Gestational trophoblastic disease (GTD) encompasses a spectrum of rare pre-malignant and malignant entities originating from trophoblastic tissue, including partial hydatidiform mole, complete hydatidiform mole and choriocarcinoma. β-galactoside α2,6 sialyltransferase 1 (ST6Gal1), the primary sialyltransferase responsible for the addition of α2,6 sialic acids, is strongly associated with the occurrence and development of several tumor types. However, the role of ST6Gal1/α2,6 -sialylation of trophoblast cells in GTD is still not well understood.
METHODS: The expression of ST6Gal1 was investigated in GTD and human immortalized trophoblastic HTR-8/SVneo cells and human gestational choriocarcinoma JAR cells. We evaluated the effect of ST6Gal1 on proliferation and stemness of trophoblastic cells. We also examined the effect of internal miR-199a-5p on ST6Gal1 expression. The role of ST6Gal1 in regulating α2,6-sialylated integrin β1 and its significance in the activation of integrin β1/focal adhesion kinase (FAK) signaling pathway were also explored.
RESULTS: ST6Gal1 was observed to be highly expressed in GTD. Overexpression of ST6Gal1 promoted the proliferation and stemness of HTR-8/SVneo cells, whereas knockdown of ST6Gal1 suppressed the viability and stemness of JAR cells. MiR-199a-5p targeted and inhibited the expression of ST6Gal1 in trophoblastic cells. In addition, we revealed integrin β1 was highly α2,6-sialylated in JAR cells. Inhibition of ST6Gal1 reduced α2,6-sialylation on integrin β1 and suppressed the integrin β1/FAK pathway in JAR cells, thereby affecting its biological functions.
CONCLUSIONS: This study demonstrated that ST6Gal1 plays important roles in promoting proliferation and stemness through the integrin β1 signaling pathway in GTD. Therefore, ST6Gal1 may have a potential role in the occurrence and development of GTD.