%0 Journal Article %T Plasma membrane calcium ATPase powered by glycolysis is the main mechanism for calcium clearance in the hippocampal pyramidal neuron. %A Alves VS %A Oliveira FA %J Life Sci %V 344 %N 0 %D 2024 May 1 %M 38462228 %F 6.78 %R 10.1016/j.lfs.2024.122554 %X OBJECTIVE: This study sought to elucidate the primary ATP-dependent mechanisms involved in clearing cytosolic Ca2+ in neurons and determine the predominant ATP-generating pathway-glycolysis or tricarboxylic acid cycle/oxidative phosphorylation (TCA/OxPhos)-associated with these mechanisms in hippocampal pyramidal neurons.
METHODS: Our investigation involved evaluating basal Ca2+ levels and analyzing the kinetic characteristics of evoked neuronal Ca2+ transients after selectively combined the inhibition/blockade of key ATP-dependent mechanisms with the suppression of either TCA/OxPhos or glycolytic ATP sources.
RESULTS: Our findings unveiled that the plasma membrane Ca2+ ATPase (PMCA) serves as the principal ATP-dependent mechanism for clearance cytosolic Ca2+ in hippocampal pyramidal neurons, both during rest and neuronal activity. Remarkably, during cellular activity, PMCA relies on ATP derived from glycolysis, challenging the traditional notion of neuronal reliance on TCA/OxPhos for ATP. Other mechanisms for Ca2+ clearance in pyramidal neurons, such as SERCA and NCX, appear to be dependent on TCA/OxPhos. Interestingly, at rest, the ATP required to fuel PMCA and SERCA, the two main mechanisms to keep resting Ca2+, seems to originate from a source other than glycolysis or the TCA/OxPhos.
CONCLUSIONS: These findings underscore the vital role of glycolysis in bolstering PMCA neuronal function to uphold Ca2+ homeostasis. Moreover, they elucidate the varying dependencies of cytoplasmic Ca2+ clearance mechanisms on distinct energy sources for their operation.