%0 Journal Article %T The diversity of planktonic bacteria driven by environmental factors in different mariculture areas in the East China Sea. %A Liu W %A Bao Y %A Li K %A Yang N %A He P %A He C %A Liu J %J Mar Pollut Bull %V 201 %N 0 %D 2024 Apr 20 %M 38382319 %F 7.001 %R 10.1016/j.marpolbul.2024.116136 %X Planktonic bacteria play a crucial role in sustaining the ecological balance of aquatic ecosystems. However, their seasonal variations in different aquaculture areas within the East China Sea, along with their correlation to environmental factors, have not been extensively explored. In this study, each area with 3 sample points were set up to represent the fish aquaculture area, shellfish aquaculture area and non-aquaculture area. In 2019, we undertook four marine surveys along the Xiasanhengshan uninhabited island, during which we gathered surface seawater samples for both physicochemical analysis and high-throughput sequencing. This allowed us to obtain data about the physicochemical properties and microbial composition in each surveyed region. A short-term eutrophication phenomenon was present in the sea, and the spatial and temporal distribution of planktonic bacteria differed based on the mariculture area. At the phylum level, Proteobacteria accounted for >50 % of the community abundance in winter, spring, and autumn, while Cyanobacteria accounted for >30 % of the community abundance in summer. Because Cyanobacteria blooms are likely in summer, the relationship between Cyanobacteria and environmental factors was studied. Redundancy analysis showed that Cyanobacteria were consistently positively correlated with phosphate. Eutrophication and abnormal proliferation of Cyanobacteria in the study area necessitate ameliorations in the mariculture structure. The variation of genus in Proteobacteria is consistent with that of eutrophication, so some genera in Proteobacteria have the potential to become biological indicator species.