%0 Journal Article %T Carrier frequencies, trends, and geographical distribution of hearing loss variants in China: The pooled analysis of 2,161,984 newborns. %A Feng J %A Zeng Z %A Luo S %A Liu X %A Luo Q %A Yang K %A Zhang G %A Liu J %J Heliyon %V 10 %N 3 %D 2024 Feb 15 %M 38322914 %F 3.776 %R 10.1016/j.heliyon.2024.e24850 %X The aim of this study is to comprehensively investigate the prevalence and distribution patterns of three common genetic variants associated with hearing loss (HL) in Chinese neonatal population. Methods: Prior to June 30, 2023, an extensive search and screening process was conducted across multiple literature databases. R software was utilized for conducting meta-analyses, cartography, and correlation analyses. Results: Firstly, our study identified a total of 99 studies meeting the inclusion criteria. Notably, provinces such as Qinghai, Tibet, Jilin, and Heilongjiang lack large-scale genetic screening data for neonatal deafness. Secondly, in Chinese newborns, the carrier frequencies of GJB2 variants (c.235delC, c.299_300delAT) were 1.63 % (95 %CI 1.52 %-1.76 %) and 0.33 % (95 %CI 0.30 %-0.37 %); While SLC26A4 variants (c.919-2A > G, c.2168A > G) exhibited carrier rates of 0.95 % (95 %CI 0.86 %-1.04 %) and 0.17 % (95 %CI 0.15 %-0.19 %); Additionally, Mt 12S rRNA m.1555 A > G variant was found at a rate of 0.24 % (95 % CI 0.22 %-0.26 %). Thirdly, the mutation rate of GJB2 c.235delC was higher in the east of the Heihe-Tengchong line, whereas the mutation rate of Mt 12S rRNA m.1555 A > G variant exhibited the opposite pattern. Forthly, no significant correlation exhibited the opposite pattern of GJB2 variants, but there was a notable correlation among SLC26A4 variants. Lastly, strong regional distribution correlations were evident between mutation sites from different genes, particularly between SLC26A4 (c.919-2A > G and c.2168A > G) and GJB c.299_300delAT. Conclusions: The most prevalent deafness genes among Chinese neonates were GJB2 c.235delC variant, followed by SLC26A4 c.919-2A > G variant. These gene mutation rates exhibit significant regional distribution characteristics. Consequently, it is imperative to enhance genetic screening efforts to reduce the incidence of deafness in high-risk areas.