%0 Journal Article %T Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells. %A Hof WFJ %A Visser M %A de Jong JJ %A Rajasekar MN %A Schuringa JJ %A de Graaf IAM %A Touw DJ %A Dekkers BGJ %J Toxins (Basel) %V 16 %N 1 %D 2024 01 22 %M 38276537 %F 5.075 %R 10.3390/toxins16010061 %X Amanita phalloides poisonings account for the majority of fatal mushroom poisonings. Recently, we identified hematotoxicity as a relevant aspect of Amanita poisonings. In this study, we investigated the effects of the main toxins of Amanita phalloides, α- and β-amanitin, on hematopoietic cell viability in vitro. Hematopoietic cell lines were exposed to α-amanitin or β-amanitin for up to 72 h with or without the pan-caspase inhibitor Z-VAD(OH)-FMK, antidotes N-acetylcysteine, silibinin, and benzylpenicillin, and organic anion-transporting polypeptide 1B3 (OATP1B3) inhibitors rifampicin and cyclosporin. Cell viability was established by trypan blue exclusion, annexin V staining, and a MTS assay. Caspase-3/7 activity was determined with Caspase-Glo assay, and cleaved caspase-3 was quantified by Western analysis. Cell number and colony-forming units were quantified after exposure to α-amanitin in primary CD34+ hematopoietic stem cells. In all cell lines, α-amanitin concentration-dependently decreased viability and mitochondrial activity. β-Amanitin was less toxic, but still significantly reduced viability. α-Amanitin increased caspase-3/7 activity by 2.8-fold and cleaved caspase-3 by 2.3-fold. Z-VAD(OH)-FMK significantly reduced α-amanitin-induced toxicity. In CD34+ stem cells, α-amanitin decreased the number of colonies and cells. The antidotes and OATP1B3 inhibitors did not reverse α-amanitin-induced toxicity. In conclusion, α-amanitin induces apoptosis in hematopoietic cells via a caspase-dependent mechanism.