%0 Journal Article %T Targeted isolation of sorbicilinoids from a deep-sea derived fungus with anti-neuroinflammatory activities. %A Wu J %A Meng Q %A Liu D %A Fan A %A Huang J %A Lin W %J Phytochemistry %V 219 %N 0 %D 2024 Mar 17 %M 38237844 %F 4.004 %R 10.1016/j.phytochem.2024.113976 %X A chemical fingerprinting approach utilizing LC-MS/MS coupled with 2D NMR data was established to characterize the profile of sorbicilinoid-type metabolites from a deep-sea derived fungus Penicillium rubens F54. Targeted isolation of the cultured fungus resulted in the discovery of 11 undescribed sorbicilinoids namely sorbicillinolides A-K (1-11). Their structures were identified by extensive analyses of the spectroscopic data, including the calculation of electronic circular dichroism and optical rotation for configurational assignments. The cyclopentenone core of sorbicillinolides A-D is likely derived from sorbicillin/dihydrosorbicillin through a newly oxidative rearrangement. The stereoisomers of sorbicillinolides E-G incorporate a nitrogen unit, forming a unique hydroquinoline nucleus. Sorbicillinolides A and C exhibited significant anti-neuroinflammation in LPS-stimulated BV-2 macrophages, achieved by potent inhibition of NO and PGE2 production through the interruption of RNA transcription of iNOS, COX-2 and IL6 in the NF-κB signaling pathway. Further investigation identified COX-2 as a potential target of sorbicillinolide A. These findings suggest sorbicillinolide A as a potential lead for the development of a non-steroidal anti-neuroinflammatory agent.