%0 Journal Article %T Starch-based antibacterial food packaging with ZnO nanoparticle. %A Kumar P %A Gautam S %A Bansal D %A Kaur R %J J Food Sci Technol %V 61 %N 1 %D 2024 Jan %M 38192709 %F 3.117 %R 10.1007/s13197-023-05834-9 %X Starch-based biofilms with embedded nanoparticles (NPs) are used to wrap food in biodegradable packaging system that has high antibacterial action against a variety of microorganisms. In this study, ZnO NPs were synthesised using both a green synthesis approach utilising Azadirachta indica (Neem) and a chemical synthesis approach using the sol-gel technique. The structural and morphological properties of all synthesized NPs were characterized through XRD, UV-VIS, UV-DRS, FTIR, and FESEM analysis. Further, these NPs were employed in the development of starch-based biodegradable films. A meticulous comparative analysis was performed to evaluate the functional properties of the nanocomposites, encompassing crucial parameters such as film thickness, moisture content, swelling index, opacity, solubility, water vapor permeability, and tensile strength. In comparison to films embedded with chemically synthesised NPs (F1), nanocomposite with green synthesised NPs (F2) showed 15.27% greater inhibition against Escherichia coli growth and 22.05% stronger inhibition against Staphylococcus aureus bacterial strains. Based on the biodegradability analysis, the nanocomposite film-F2 showed a 53.33% faster degradation rate compared to the film-F1. The developed films were utilized to assess the quality of both wrapped and unwrapped grapes, leading to the generalization of the research for the development of starch-based antibacterial and environmentally friendly food packaging material.
UNASSIGNED: The online version contains supplementary material available at 10.1007/s13197-023-05834-9.