%0 Journal Article %T CXCL9 as a Reliable Biomarker for Discriminating Anti-IFN-γ-Autoantibody-Associated Lymphadenopathy that Mimics Lymphoma. %A Yuan CT %A Huang WT %A Hsu CL %A Wang H %A Pan YH %A Wu UI %A Wang JT %A Sheng WH %A Chen YC %A Chang SC %J J Clin Immunol %V 44 %N 1 %D 2023 12 28 %M 38153613 %F 8.542 %R 10.1007/s10875-023-01643-z %X The diagnosis of adult-onset immunodeficiency syndrome associated with neutralizing anti-interferon γ autoantibodies (AIGA) presents substantial challenges to clinicians and pathologists due to its nonspecific clinical presentation, absence of routine laboratory tests, and resemblance to certain lymphoma types, notably nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI). Some patients undergo lymphadenectomy for histopathological examination to rule out lymphoma, even in the absence of a preceding clinical suspicion of AIGA. This study aimed to identify reliable methods to prevent misdiagnosis of AIGA in this scenario through a retrospective case-control analysis of clinical and pathological data, along with immune gene transcriptomes using the NanoString nCounter platform, to compare AIGA and nTFHL-AI. The investigation revealed a downregulation of the C-X-C motif chemokine ligand 9 (CXCL9) gene in AIGA, prompting an exploration of its diagnostic utility. Immunohistochemistry (IHC) targeting CXCL9 was performed on lymph node specimens to assess its potential as a diagnostic biomarker. The findings exhibited a significantly lower density of CXCL9-positive cells in AIGA compared to nTFHL-AI, displaying a high diagnostic accuracy of 92.3% sensitivity and 100% specificity. Furthermore, CXCL9 IHC demonstrated its ability to differentiate AIGA from various lymphomas sharing similar characteristics. In conclusion, CXCL9 IHC emerges as a robust biomarker for differentiating AIGA from nTFHL-AI and other similar conditions. This reliable diagnostic approach holds the potential to avert misdiagnosis of AIGA as lymphoma, providing timely and accurate diagnosis.