%0 Journal Article %T Cleaner Leather Tanning and Post-Tanning Processes Using Oxidized Alginate as Biodegradable Tanning Agent and Nano-Hydroxyapatite as Potential Flame Retardant. %A Quaratesi I %A Micu MC %A Rebba E %A Carsote C %A Proietti N %A Di Tullio V %A Porcaro R %A Badea E %J Polymers (Basel) %V 15 %N 24 %D 2023 Dec 11 %M 38139929 %F 4.967 %R 10.3390/polym15244676 %X In this study, sodium alginate (SA) was oxidized with potassium periodate to produce an alginate-based tanning agent. Using OSA as a biodegradable tanning agent and a nano-hydroxyapatite (nano-HAp) low concentration suspension to give flame retardancy to leather, eco-design concepts were applied to establish a chrome-, aldehyde-, and phenol-free tanning process. Micro-DSC, 1H unilateral nuclear magnetic resonance (NMR), attenuated total reflection mode Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the complex matrix collagen-OSA-nano-HAp. Micro-differential scanning calorimetry (micro-DSC) was used to assess OSA's ability to interact with collagen and stabilize the collagen-OSA matrix, while 1H unilateral (NMR) was used to investigate the aqueous environment and its limitations around collagen molecules caused by their association with OSA and nano-HAp. Industrial standard tests were used to assess the mechanical properties and fire resistance of the new leather prototype. The findings reported here indicate that both OSA and nano-HAp are suitable alternatives for cleaner tanning technologies and more sustainable leather.