%0 Journal Article %T Tea Harvesting and Processing Techniques and Its Effect on Phytochemical Profile and Final Quality of Black Tea: A Review. %A Aaqil M %A Peng C %A Kamal A %A Nawaz T %A Zhang F %A Gong J %J Foods %V 12 %N 24 %D 2023 Dec 13 %M 38137271 %F 5.561 %R 10.3390/foods12244467 %X Tea (Camellia sinensis) has grown for over 300 years and is recognized worldwide as among other well-renowned crops. The quality of black tea depends on plucking (method, standard, season, and intervals), withering and rolling (time and temperature), fermentation (time, temperature, and RH), drying (temperature and method), and storage conditions, which have a high influence on the final quality of black tea. At the rolling stage, the oxidation process is initiated and ends at the early drying stage until the enzymes that transform tea polyphenols into thearubigins (TRs) and theaflavins (TFs) are denatured by heat. By increasing fermentation time, TRs increased, and TF decreased. Each is liable for black tea's brightness, taste, and color. The amino acids and essential oils also grant a distinctive taste and aroma to black tea. Throughout withering, rolling, and fermentation, increases were found in essential oil content, but during drying, a decrease was observed. However, the Maillard reaction, which occurs when amino acids react with sugar during drying, reimburses for this decrease and enhances the flavor and color of black tea. As compared to normal conditions, accelerated storage showed a slight decrease in the total color, TF, and TRs. It is concluded that including plucking, each processing step (adopted technique) and storage system has a remarkable impact on black tea's final quality. To maintain the quality, an advanced mechanism is needed to optimize such factors to produce high-quality black tea, and an objective setting technique should be devised to attain the desirable quality characteristics.