%0 Journal Article %T Enhancing biophotovoltaic efficiency: Study on a highly productive green algal strain Parachlorella kessleri MACC-38. %A Petrova NZ %A Tóth TN %A Shetty P %A Maróti G %A Tóth SZ %J Bioresour Technol %V 394 %N 0 %D 2024 Feb 18 %M 38122998 %F 11.889 %R 10.1016/j.biortech.2023.130206 %X Biophotovoltaic (BPV) devices are a potential decentralized and environmentally friendly energy source that harness solar energy through photosynthesis. BPV devices are self-regenerating, promising long-term usability. A practical strategy for enhancing BPV performance is to systematically screen for highly exoelectrogenic algal strains capable of generating large electric current density. In this study, a previously uncharacterized green algal strain - Parachlorella kessleri MACC-38 was found to generate over 340 µA mg-1 Chl cm-2. This output is approximately ten-fold higher than those of Chlamydomonas reinhardtii and Chlorella species. The current production of MACC-38 primarily originates from photosynthesis, and the strain maintains its physiological integrity throughout the process. MACC-38 exhibits unique traits such as low extracellular O2 and Fe(III) reduction, substantial copper (II) reduction, and significant extracellular acidification during current generation, contributing to its high productivity. The exoelectrogenic and growth characteristics of MACC-38 suggest that it could markedly boost BPV efficiency.