%0 Journal Article %T Advanced materials for smart protective coatings: Unleashing the potential of metal/covalent organic frameworks, 2D nanomaterials and carbonaceous structures. %A Ghaderi M %A Bi H %A Dam-Johansen K %J Adv Colloid Interface Sci %V 323 %N 0 %D 2024 Jan 29 %M 38091691 %F 15.19 %R 10.1016/j.cis.2023.103055 %X The detrimental impact of corrosion on metallic materials remains a pressing concern across industries. Recently, intelligent anti-corrosive coatings for safeguarding metal infrastructures have garnered significant interest. These coatings are equipped with micro/nano carriers that store corrosion inhibitors and release them when triggered by external stimuli. These advanced coatings have the capability to elevate the electrochemical impedance values of steel by 2-3 orders of magnitude compared to the blank coating. However, achieving intelligent, durable, and reliable anti-corrosive coatings requires careful consideration in the design of these micro/nano carriers. This review paper primarily focuses on investigating the corrosion inhibition mechanism of various nano/micro carriers/barriers and identifying the challenges associated with using them for achieving desired properties in anti-corrosive coatings. Furthermore, the fundamental aspects required for nano/micro carriers, including compatibility with the coating matrix, high specific surface area, stability in different environments, stimuli-responsive behavior, and facile synthesis were investigated. To achieve this aim, we explored the properties of micro/nanocarriers based on oxide nanoparticles, carbonaceous and two-dimensional (2D) nanomaterials. Finally, we reviewed recent literature on the application of state-of the art nanocarriers based on metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). We believe that the outcomes of this review paper offer valuable insights for researchers in selecting appropriate materials that can effectively enhance the corrosion resistance of coatings.